NVIDIA Logo

NVIDIA

Senior Site Reliability Engineer - AI Research Clusters

Job Posted 19 Days Ago Posted 19 Days Ago
Be an Early Applicant
5 Locations
184K-426K
Senior level
5 Locations
184K-426K
Senior level
Design and implement GPU compute clusters, optimize operations for efficiency, troubleshoot and maintain large-scale infrastructure, and enhance researcher productivity.
The summary above was generated by AI

NVIDIA is the leader in AI, machine learning and datacenter acceleration. NVIDIA is expanding that leadership into datacenter networking with ethernet switches, NICs and DPUs NVIDIA has continuously reinvented itself over two decades. Our invention of the GPU in 1999 sparked the growth of the PC gaming market, redefined modern computer graphics, and revolutionized parallel computing. More recently, GPU deep learning ignited modern AI — the next era of computing. NVIDIA is a “learning machine” that constantly evolves by adapting to new opportunities that are hard to solve, that only we can tackle, and that matter to the world. This is our life’s work, to amplify human imagination and intelligence. Make the choice, join our diverse team today!

As a member of the GPU AI/HPC Infrastructure team, you will provide leadership in the design and implementation of ground breaking GPU compute clusters that powers all AI research across NVIDIA. We seek an expert to build and operate these clusters at high reliability, efficiency, and performance and drive foundational improvements and automation to improve researchers productivity. As a Site Reliability Engineer, you are responsible for the big picture of how our systems relate to each other, we use a breadth of tools and approaches to tackle a broad spectrum of problems. Practices such as limiting time spent on reactive operational work, blameless postmortems and proactive identification of potential outages factor into iterative improvement that is key to both product quality and interesting dynamic day-to-day work. SRE's culture of diversity, intellectual curiosity, problem solving and openness is important to our success. Our organization brings together people with a wide variety of backgrounds, experiences and perspectives. We encourage them to collaborate, think big and take risks in a blame-free environment. We promote self-direction to work on meaningful projects, while we also strive to build an environment that provides the support and mentorship needed to learn and grow.

What you'll be doing:

In this role you will be building and improving our ecosystem around GPU-accelerated computing including developing large scale automation solutions. You will also be maintaining and building deep learning AI-HPC GPU clusters at scale and supporting our researchers to run their flows on our clusters including performance analysis and optimizations of deep learning workflows. You will design, implement and support operational and reliability aspects of large scale distributed systems with focus on performance at scale, real time monitoring, logging and alerting. Additional responsibilities include:

  • Design and implement state-of-the-art GPU compute clusters.

  • Optimize cluster operations for maximum reliability, efficiency, and performance.

  • Drive foundational improvements and automation to enhance researcher productivity.

  • Tackle strategic challenges in large-scale, high-performance computing environments.

  • Troubleshoot, diagnose and root cause of system failures and isolate the components/failure scenarios while working with internal & external partners.

  • Scale systems sustainably through mechanisms like automation, and evolve systems by pushing for changes that improve reliability and velocity.

  • Practice sustainable incident response and blameless postmortems

  • Be part of an on call rotation to support production systems

  • Write and review code, develop documentation and capacity plans, debug the hardest problems, live, on some of the largest and most complex systems in the world.

  • Implement remediations across software and hardware stack according to plan, while keeping a thorough procedural record and data log.

  • Manage upgrades and automated rollbacks across all clusters.

What we need to see:

  • Bachelor’s degree in Computer Science, Electrical Engineering or related field or equivalent experience with a minimum 6+ years of experience designing and operating large scale compute infrastructure

  • Proven experience in site reliability engineering for high-performance computing environments with operational experience of at least 5K GPUs cluster.

  • Deep understanding of GPU computing and AI infrastructure.

  • Passion for solving complex technical challenges and optimizing system performance.

  • Experience with AI/HPC advanced job schedulers, and ideally familiarity with schedulers such as Slurm.

  • Solid experience with GPU clusters, and working knowledge of cluster configuration management tools such as BCM or Ansible and infrastructure level applications, such as Kubernetes, Terraform, MySQL, etc.

  • In depth understating of container technologies like Docker, Enroot, etc.

  • Experience programming in Python and Bash scripting.

Ways to stand out from the crowd:

  • Interest in crafting, analyzing and fixing large-scale distributed systems

  • Familiarity with NVIDIA GPUs, Cuda Programming, NCCL and MLPerf benchmarking.

  • Familiarity with InfiniBand with IBoIP and RDMA.

  • Experience with Cloud Deployment, BCM, Terraform.

  • Understanding of fast, distributed storage systems like Lustre and GPFS for AI/HPC workloads.

  • Familiarity with deep learning frameworks like PyTorch and TensorFlow.

  • Multi-cloud experience.

NVIDIA offers highly competitive salaries and a comprehensive benefits package. We have some of the most brilliant and talented people in the world working for us and, due to unprecedented growth, our world-class engineering teams are growing fast. If you're a creative and autonomous engineer with real passion for technology, we want to hear from you.

#LI-Hybrid

The base salary range is 184,000 USD - 425,500 USD. Your base salary will be determined based on your location, experience, and the pay of employees in similar positions.

You will also be eligible for equity and benefits. NVIDIA accepts applications on an ongoing basis.

NVIDIA is committed to fostering a diverse work environment and proud to be an equal opportunity employer. As we highly value diversity in our current and future employees, we do not discriminate (including in our hiring and promotion practices) on the basis of race, religion, color, national origin, gender, gender expression, sexual orientation, age, marital status, veteran status, disability status or any other characteristic protected by law.

Top Skills

Bash
Docker
Enroot
Gpfs
Kubernetes
Lustre
MySQL
Python
PyTorch
Slurm
TensorFlow
Terraform
HQ

NVIDIA Seattle, Washington, USA Office

4545 Roosevelt Way NE 6th Floor, Seattle, Washington, United States, 98105

Similar Jobs

7 Minutes Ago
Hybrid
Houston, TX, USA
Mid level
Mid level
Financial Services
As a Site Reliability Engineer III, you will design, implement, and maintain resilient applications and infrastructure, collaborate with teams to solve complex problems, and promote best practices in site reliability engineering.
Top Skills: .NetCloudDatadogDockerDynatraceEcsGitlabGrafanaJavaJenkinsKubernetesPrometheusPythonSplunkSpring BootTerraform
9 Minutes Ago
Hybrid
Plano, TX, USA
134K-254K Annually
Senior level
134K-254K Annually
Senior level
Artificial Intelligence • Fintech • Insurance • Marketing Tech • Software • Analytics
Lead a team of software, data, and infrastructure engineers in delivering analytics solutions and enhance operational data management while ensuring effective collaboration with multiple stakeholders.
Top Skills: Agile MethodologiesData LifecycleETLSAS
39 Minutes Ago
Hybrid
Fort Worth, TX, USA
Senior level
Senior level
Financial Services
The Sr Lead Architect is responsible for defining architecture, guiding technology teams, ensuring governance, and integrating GenAI technologies within global banking systems.
Top Skills: AWSAzureDockerGCPKubernetesTerraform

What you need to know about the Seattle Tech Scene

Home to tech titans like Microsoft and Amazon, Seattle punches far above its weight in innovation. But its surrounding mountains, sprinkled with world-famous hiking trails and climbing routes, make the city a destination for outdoorsy types as well. Established as a logging town before shifting to shipbuilding and logistics, the Emerald City is now known for its contributions to aerospace, software, biotech and cloud computing. And its status as a thriving tech ecosystem is attracting out-of-town companies looking to establish new tech and engineering hubs.

Key Facts About Seattle Tech

  • Number of Tech Workers: 287,000; 13% of overall workforce (2024 CompTIA survey)
  • Major Tech Employers: Amazon, Microsoft, Meta, Google
  • Key Industries: Artificial intelligence, cloud computing, software, biotechnology, game development
  • Funding Landscape: $3.1 billion in venture capital funding in 2024 (Pitchbook)
  • Notable Investors: Madrona, Fuse, Tola, Maveron
  • Research Centers and Universities: University of Washington, Seattle University, Seattle Pacific University, Allen Institute for Brain Science, Bill & Melinda Gates Foundation, Seattle Children’s Research Institute
By clicking Apply you agree to share your profile information with the hiring company.

Sign up now Access later

Create Free Account

Please log in or sign up to report this job.

Create Free Account